OpenVPN is **Open to VPN** Fingerprinting

USENIX Security 2022

Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis J. Alex Halderman, Jedidiah R. Crandall, Roya Ensafi

University of Michigan, Merit Network, Inc., Arizona State University

Internet traffic

is increasingly being **disrupted**, **tampered with**, **and monitored** by ISPs, advertisers, and other threat actors.

VPNs are on the Rise

"From 2010 to year-end 2019, the use of VPNs has increased by approximately four times"
Cybersecurity Company PC
Matic, 2020

From Enterprise Security To Privacy and Censorship Circumvention

- Create private network across the public Internet through Encrypted Tunneling.
- Increasingly being used in non-enterprise setting.

OPENVPN

An Evolving Threat Model

- Most of past research focused on the Integrity and Confidentiality of the tunnel.
 - Tunnel Penetrating Attacks
 - Data Injection
 - Traffic Leaks

• Threat actors now attacking **Availability**.

Blind In/On-Path Attacks and Applications to VPNs

William J. Tolley* Breakpointing Bad Arizona State University

Beau Kujath Breakpointing Bad Arizona State University

Mohammad Taha Khan Washington & Lee University

ARTIFACT EVALUATED

PASSED

Narseo Vallina-Rodriguez IMDEA Networks Institute International Computer Science Institute Jedidiah R. Crandall Breakpointing Bad Arizona State University

₩CVE-2021-3773 Detail

MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.

Current Description

A flaw in netfilter could allow a network-connected attacker to infer openvpn connection endpoint information for further use in traditional network attacks.

All Traffic Leak	Name of VPN Provider
Free Providers	Free VPN by Free VPN.org, Psiphon, Urban VPN desktop,
(4)	VPN Proxy Master
Self-hosted (1)	OpenVPN Access Server
Paid Providers	Encrypt.me, Hide My Ass!*, IPVanish*, Ivacy VPN,
(8)	Pure VPN, Speedify, Trust.Zone, Strong VPN*
Paid & Leaks	Astrill VPN*, Norton Secure VPN, SurfEasy, Turbo VPN,
IPv6 (5)	University VPN
Only leaks DNS	1.1.1.1+Warp, Avira Phantom VPN, Betternet,
traffic during	Hotspot Shield*, Private Internet Access*, Streisand (on
tunnel failure (8)	OpenVPN Connect v3), TunnelBear, VPN Owl

Table III: **Providers with traffic leakages**—26 providers leak traffic during tunnel failure. * indicates those with traffic leaks

Not a hypothetical threat...

Indiatimes.com

VPN Ban: Indian Parliamentary Committee Wants To Ban VPN Services In India

Virtual Private Network services or VPN could be in danger in India as the Parliamentary Standing Committee On Home Affairs is looking to...

Rain throttles Internet speeds for customers on VPNs

Jamie McKane 1 February 2021

Cybernews

Russia adds another VPN to its ban list

Last year, Russia banned Hola!VPN, ExpressVPN, KeepSolid VPN Unlimited, Nord VPN, Speedify VPN, and IPVanish VPN.

"Bypass Even The Toughest VPN Filters"

Stealth VPN - the best solution to bypass restrictions in China

Stealth VPN works where ordinary VPN does not

📒 Download app

Use obfuscated servers for extra privacy

- Hide your VPN use
- Avoid government censorship
- Bypass restrictions at work

Get Started

How the IPVanish Scramble feature works

IPVanish offers an obfuscation setting for OpenVPN on Windows, macOS, Android, and Fire TV devices called Scramble. This feature works by encoding and shuffling OpenVPN data packets so that tools meant to block VPN traffic let it pass.

"Obfuscated" VPN services

Can ISPs and governments identify VPN traffic in near real time?

Can they do so at-scale, without incurring significant collateral damage from false positives?

We focus on OpenVPN and its variants!

The most popular protocol for commercial VPN services "Obfuscated" VPN services built on top of OpenVPN Mechanisms in place to impede fingerprinting attempts

Is OpenVPN Open to fingerprinting, in practice?

- Previous work used machine learning models on flow-level statistics
 - Connection duration
 - Inter-packet latency
 - Traffic symmetry

- Do these approaches work in practice?
 - Real-world ML-based censorship system not documented
 - Synthetic dataset, lab-based evaluations
 - Seemingly low false-positive can still be economically impractical

Effective investigation of Fingerprintability requires not only to identify vulnerabilities, but also to **demonstrate practical exploits** under the constraints of **how ISPs and censors operate** in the real world.

Examining how the Great Firewall of China discovers hidden circumvention servers. IMC'15

Analyzing China's blocking of unpublished Tor bridges. FOCI'18 How China detects and blocks Shadowsocks. IMC'20

Fingerprinting OpenVPN

Filtering Phase:

- **Opcode Evolution** (Byte Pattern)
- ACK Repetition (Packet Size)

Probing Phase:

• Customized Probes

(Server Behaviors)

Fingerprint 1: Opcode

- Opcode is a fixed value in the header which denotes each stage of the session
- Opcode evolution of a new OpenVPN session is unique and can be used to fingerprint OpenVPN.
- Flexible enough to catch certain "obfuscated" variants.

Opcode message types:

<pre>#define</pre>	P_CONTROL_HARD_RESET_CLIENT_V1	1
<pre>#define</pre>	P_CONTROL_HARD_RESET_SERVER_V1	2
<pre>#define</pre>	P_CONTROL_SOFT_RESET_V1	3
<pre>#define</pre>	P_CONTROL_V1	4
<pre>#define</pre>	P_ACK_V1	5
<pre>#define</pre>	P_DATA_V1	6
<pre>#define</pre>	P_DATA_V2	9
<pre>#define</pre>	P_CONTROL_HARD_RESET_CLIENT_V2	7
<pre>#define</pre>	P_CONTROL_HARD_RESET_SERVER_V2	8
<pre>#define</pre>	P_CONTROL_HARD_RESET_CLIENT_V3	10

Fingerprint 2: ACK Packets

- Explicit acknowledgement and retransmission model for "control" messages.
- Uniform in size for each session; not the same as TCP ACK flag;
- Quantify "ACK Fingerprint" as a set of threshold-based detection rules.

Detection accuracy of Filtering phase

Filtering Phase:

- Opcode Evolution (Byte Pattern)
- ACK Repetition (Packet Size)

Detection accuracy of Filtering phase

Filtering Phase:

- Opcode Evolution (Byte Pattern)
- ACK Repetition (Packet Size)

Increasing accuracy to prevent significant collateral damage requires **active probing**

Active Probing

- Defense mechanisms "tls-auth" and "tls-crypt" enable a firewall-like protection.
 - OpenVPN remains silent until the client proves knowledge of a shared secret.
- Application may stay silent, but application-specific behaviors can still be observed at network level.

(related: Detecting Probe-resistant Proxies NDSS'20)

Our customized probes:

ProbeName	Probe Content
BaseProbe 1	x00x0ex38.{8}x00x00x00x00x00
BaseProbe 2	x00x0ex38.{8}x00x00x00x00
One Zero	x00x0ax0dx0a
Two Zero Epmd	x00x00 x00x01x6e
ssн	SSH-2.0-OpenSSH_8.1/r/n
HTTP-GET	GET/HTTP/1.0 /r /n /r /n Typical Client Hello by Chromium
2K-Random	Random 2000 Bytes

ProbeName	Probe Content	Expected Behavior
BaseProbe 1	x00x0ex38.{8}x00x00x00x00x00	Explicit ServerRe-
BaseProbe 2	x00x0ex38.{8}x00x00x00x00	Long Close
TCP Generic	x0dx0ax0dx0a	Short Close
One Zero	x00	Long Close
Two Zero	x00x00	Short Close
Epmd	x00x01x6e	Short Close
SSH	SSH-2.0-OpenSSH_8.1/r/n	Short Close
HTTP-GET	GET/HTTP/1.0 /r /n /r /n	Short Close
TLS	Typical Client Hello by Chromium	Short Close
2K-Random	Random 2000 Bytes	Short Close & RST

Testing on Commercial VPNs

• Effective in detecting vanilla OpenVPN flows. (39/40 vanilla configurations)

• **Surprisingly, 72.67% obfuscated flows also detected.** (34/41 obfuscated configurations).

- "Obfuscated" VPN services use OpenVPN as backbone protocol
- Insufficient obfuscation failing to mask fingerprints.

Fingerprinting "Obfuscated" VPNs

XOR Obfuscation

Additional Encrypted Tunneling

Obfuscated Servers

Fingerprinting "Obfuscated" VPNs

XOR Obfuscation

Additional Encrypted Tunneling

Obfuscated Servers

1:1 correspondence between opcodes and ciphertext Lack of random padding

Co-location of Bridges and vanilla servers.

XOR Obfuscation

- Unofficial patch that scrambles payloads by a series of XOR operations.
- Opcode excluded from reversal, therefore always mapped to the same ciphertext. Behavior preserved in multiple implementations.

+int buffer_reverse (struct buffer *buf) {
+ int len = BLEN(buf);
+ if (len > 2) {
+ int i;
+ uint8_t *b_start = BPTR (buf) + 1;
+ uint8_t *b_end = BPTR (buf) + (len - 1);
|

Share it with your friends:

X

Accuracy

- Collateral damage as the fundamental measure of practicality.
 - Week-long evaluation, aggregated 20 Gbps of mirrored traffic.
 - 3,638 flows flagged. (0.0039%)
 - Manual analysis found supporting evidence for 90% of flagged connections.

stunnel.airvpn.org

Root certificate authority Expires: Monday, January 15, 2035 at 8:29:24 AM Eastern Standard Time

route:	185.159.156.0/24
origin:	AS8473
mnt-by:	ch-protonvpn-1-mnt

Conclusion

- Fingerprinting OpenVPN is within the reach of any network operator.
 - Even with obfuscation patches deployed in the wild.
 - Risk of throttling, blocking, and even follow-up attacks on VPN tunnel.
 - Users should *NOT* expect unobservability, even with "stealth" VPN.

Conclusion

- Fingerprinting OpenVPN is within the reach of any network operator.
 - Even with obfuscation patches deployed in the wild.
 - Risk of throttling, blocking, and even follow-up attacks on VPN tunnel.
 - Users should *NOT* expect unobservability, even with "stealth" VPN.
- Moving forward...
 - Short-term defense.
 - A gap between obfuscation research and implementation.

OpenVPN is **Open to VPN** Fingerprinting

USENIX Security 2022

Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis J. Alex Halderman, Jedidiah R. Crandall, Roya Ensafi

University of Michigan, Merit Network, Inc., Arizona State University

Backup

Encrypted Tunneling

- Tunnel-based obfuscation wraps OpenVPN traffic through encryption.
 - SSL/SSH Tunnel, obfs234 ...
- ACK fingerprints are still observable outside **tunnels that** lack random padding.

Stealth VPN				
🗹 Enable	Stunnel	 Port 	443	~ <u>(?)</u>
	Stunnel SSH			
Proxy Settings	Obfsproxy3 Obfsproxy2			

Obfuscation Servers

- In practice, most of obfuscation servers – "Bridges" – are co-located with vanilla TCP servers. (34/41 for /29 subnet)
- Infrastructures are shared between obfuscated and vanilla services from different providers.

Probe 1 & Probe 2

ProbeName	Probe Content	Expected Behavior
BaseProbe 1	x00x0ex38.{8}x00x00x00x00x00	Explicit ServerRe- set or Short Close
BaseProbe 2	x00x0ex38.{8}x00x00x00x00	Long Close
TCP Generic	x0dx0ax0dx0a	Short Close
One Zero	x00	Long Close
Two Zero	x00x00	Short Close
Epmd	x00x01x6e	Short Close
SSH	SSH-2.0-OpenSSH_8.1/r/n	Short Close
HTTP-GET	GET/HTTP/1.0 /r /n /r /n	Short Close
ГLS	Typical Client Hello by Chromium	Short Close
2K-Random	Random 2000 Bytes	Short Close & RST

Is OpenVPN Open to fingerprinting, in practice?

Real-world ML-based censorship system not documented

Synthetic dataset, lab-based evaluation Seemingly low false positive rate can be misleading.

Same dataset ISCXVPN2016 [3,14,15,17,24,26,68]

(1% FPR, 0.01% Base Rate 1 in 100 blocked is actually VPN)